Исследование вклада различных вертикальных областей в меру вращения в аккреционных дисках сверхмассивных черных дыр

М.А. Булдаков¹, Е.О. Васильев², А.С. Андрианов¹, Ю.А. Щекинов^{1, 3}

¹ АКЦ ФИАН, Москва

² Южный федеральный университет, Ростов-на-Дону

³ Рамановский научно-исследовательский институт, Бангалор, Индия

Конференция, посвященная 90-летию Николая Семеновича Кардашева, Москва, АКЦ ФИАН, 25-26 апреля 2022 г.

Введение

Мера вращения, определяемая в наблюдениях аккреционных дисков, может давать информацию о структуре магнитных полей и свойствах МГД-турбулентности в диске. При измерениях мера вращения усредняется по большим объемам, и теряется информация о распределении меры вращения по объему. Центральные и периферийные области диска могут давать различный вклад в усредненную меру вращения. В работе рассмотрен вопрос о том, какие части диска вносят наибольший вклад в величину усредненной меры вращения. Также исследованы корреляции между усредненной мерой вращения и α-параметром в различных вертикальных областях диска.

Численная модель

- Использовался код Pluto (Mignone, 2007), модель локального диска (shearing box) с изотермическим уравнением состояния.
- Использовались уравнения идеальной МГД для диска с вертикальной стратификацией плотности (Stone, 1996).
- Рассматривалась конфигурация магнитного

Временные эволюции RM и α_м в вертикальных слоях

Показаны временные эволюции горизонтально усредненной меры вращения (*RM*) для модели SB1 (слева) и модели SB1_beta_100 (справа) для различных вертикальных областей (частей расчетной области, ограниченных |z|<N·H, N=1, 2, 3, 4. Область |z|<4H соответствует полной расчетной области). RM имеет знакопеременную структуру с быстрыми осцилляциями. Для оценки вклада вертикальных областей в RM данные были сглажены методом скользящего среднего по периоду, соответствующему 12.5·T.

Локальная модель диска (shearing box) (Hawley, 1999).

- поля с нулевым вертикальным магнитным потоком, $B_z=B_{z0}$ ·sin(2 π x/L_x) (Stone et al., 1996; Hirabayashi, 2017).
- Размеры расчетной области: -0.5H<x<0.5H,
 0<y<πH, -4H<z<4H, где H характерная высота диска.
- Время расчета 160·Т, где Т период вращения диска.

Модель shearing box представляет собой небольшой фрагмент диска, находящийся на некотором большом расстоянии R₀ от центра диска, вращающийся со скоростью вращения диска Ω. Рассматривается геометрически тонкий диск. В работе для исследования меры вращения (RM) рассматривается случай вертикального луча зрения, перпендикулярного плоскости диска. Для основной модели SB1 параметр β=1000 (β – отношение газового давления к магнитному давлению), для дополнительной модели SB1_beta_100 параметр β=100.

Основные величины

- Магнитная энергия: $E_B = B^2 / 8\pi$
- Тензоры Максвелла $T_M = -(B_x \cdot B_y)/4\pi$ и Рейнольдса $T_R =
 ho v_x \delta v_y$
- α-параметр: $\alpha = \frac{\int (\overline{T}_M(z) + \overline{T}_R(z))dz}{\int \overline{\rho}(z)c_s^2 dz}$, α Максвелла: $\alpha_M = \frac{\int \overline{T}_M(z)dz}{\int \overline{\rho}(z)c_s^2 dz}$
- Мера вращения: $RM \sim \int_z B_z \cdot \rho dz$, интегрирование вдоль луча зрения.

Верхнее подчеркивание означает усреднение в горизонтальной плоскости. На рисунках размерные величины показаны в относительных единицах. Высота z показана в единицах H.

Типичное распределение плотности (слева) и тензора Максвелла (справа) в плоскости (Y, Z), t=100·T.

Зависимости от времени сглаженной величины $|\overline{RM}|$ для моделей SB1 (слева) и SB1_beta_100 (справа). Также показаны вклады f вертикальных областей в $|\overline{RM}|$.

Вклады вертикальных областей в $|\overline{RM}|$ рассчитаны следующим образом: f=<RM_{NH}/RM_{4H}>, где RM_{NH} – величина $|\overline{RM}|$, рассчитанная в области |z|<N·H, N=1, 2, 3, 4, RM_{4H} – величина $|\overline{RM}|$, рассчитанная для полной расчетной области (|z|<4·H), скобки <> означают усреднение по времени. Эволюции $|\overline{RM}|$ для различных вертикальных областей диска сходны между собой на качественном уровне. Центральная часть диска |z|<1·H дает значительный вклад в $|\overline{RM}|$ (f≈0.7 для обеих моделей).

Зависимости от времени параметра α_M для моделей SB1 (слева) и SB1_beta_100 (справа). Также показаны вклады f вертикальных областей в α_M .

Вклады вертикальных областей в α_м рассчитаны аналогично вкладам вертикальных областей в |*RM*|. Центральная часть диска |z|<1·H дает значительный вклад в α_м (f≈0.7 для обеих моделей). Эти результаты сходны с результатами для |*RM*|.

Корреляционный анализ данных

Времена и структуры локальных максимумов и минимумов для величин $|\overline{RM}|$ и α_{M} сходны между собой. Это может указывать на наличие корреляций между $|\overline{RM}|$ и α_{M} . Корреляции между $|\overline{RM}|$ и α_{M} были найдены в предыдущей работе (M.A. Buldakov et al., 2021, Astronomy at the epoch of multimessenger studies. Proceedings of the VAK-2021 conference, Aug 23-28, 2021 - Moscow, 2021, 274). Корреляции между $|\overline{RM}|$ и α_{M} рассчитаны для различных вертикальных областей. В таблице представлены данные по максимальным коэффициентам кросс-корреляции между сглаженными $|\overline{RM}|$ (t) и α_{M} (t).

Вертикальная структура диска для модели SB1

Зависимость от высоты и от времени локального параметра α_м

Зависимость от высоты и от времени горизонтально усредненной магнитной энергии

Модель	C _{1H}	C _{2H}	C _{3H}	C _{4H}
SB1	0.81	0.76	0.74	0.76
SB1_beta_100	0.89	0.85	0.83	0.83

Максимальные коэффициенты кросс-корреляции между | \overline{RM} |(t) и α_м(t). С_{NH} соответствуют коэффициентам, рассчитанным для величин в областях |z|<N·H, N=1, 2, 3, 4. Показаны результаты для 2 моделей (SB1 и SB1_beta_100).

Корреляции между $|\overline{RM}|$ и α_{M} сохраняются также и для вертикальных областей, $C_{1H} \approx C_{2H} \approx C_{3H} \approx C_{4H}$. Основной вклад в $|\overline{RM}|$ и α_{M} дают центральные области. Полученные результаты указывают на то, что эволюции $|\overline{RM}|$ и α_{M} в основном определяются процессами (например, турбулентными процессами), проходящими в центральной области диска.

Заключение и выводы

- В рассмотренных моделях shearing box для геометрически тонкого диска с вертикальным магнитным полем и стратификацией плотности основной вклад в величину горизонтально усредненной меры вращения (RM) вносят центральные области диска (|z|<1·H). Это свидетельствует о том, что для таких дисков измерения RM (которые проводятся с усреднением по большим объемам) дают информацию в основном о RM в центральных областях диска. Этот результат получен для случая вертикального луча зрения, перпендикулярного плоскости диска.
- Корреляции между $|\overline{RM}|$ и параметром α_M (α Максвелла) видны как для полной расчетной области ($|z|<4\cdot$ H), так и для центральной области диска ($|z|<1\cdot$ H). Измерения RM могут давать информацию о временной эволюции α_M (времена максимумов и минимумов, а также периоды осцилляций α_M должны примерно соответствовать тем же величинам для RM). Такая информация соответствует физическим процессам (например, турбулентности), проходящим в центральной области (например.